Feature Sets and Dimensionality Reduction for Visual Object Detection
نویسندگان
چکیده
We describe a family of object detectors that provides state-of-the-art error rates on several important datasets including INRIA people and PASCAL VOC’06 and VOC’07. The method builds on a number of recent advances. It uses the Latent SVM learning framework and a rich visual feature set that incorporates Histogram of Oriented Gradient, Local Binary Pattern and Local Ternary Pattern descriptors. Partial Least Squares dimensionality reduction is included to speed the training of the basic classifier with no loss of accuracy, and to allow a two-stage quadratic classifier that further improves the results. We evaluate our methods and compare them to other recent ones on several datasets. Our basic root detectors outperform the single component part-based ones of Felzenszwalb et. al on 9 of 10 classes of VOC’06 (12% increase in Mean Average Precision) and 11 of 20 classes of VOC’07 (7% increase in MAP). On the INRIA Person dataset, they increase the Average Precision by 12% relative to Dalal & Triggs.
منابع مشابه
Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملImprovement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010